Adversarial training is one effective approach for training robust deep neural networks against adversarial attacks. While being able to bring reliable robustness, adversarial training (AT) methods in general favor high capacity models, i.e., the larger the model the better the robustness. This tends to limit their effectiveness on small models, which are more preferable in scenarios where storage or computing resources are very limited (e.g., mobile devices). In this paper, we leverage the concept of knowledge distillation to improve the robustness of small models by distilling from adversarially trained large models. We first revisit several state-of-the-art AT methods from a distillation perspective and identify one common technique that can lead to improved robustness: the use of robust soft labels -- predictions of a robust model. Following this observation, we propose a novel adversarial robustness distillation method called Robust Soft Label Adversarial Distillation (RSLAD) to train robust small student models. RSLAD fully exploits the robust soft labels produced by a robust (adversarially-trained) large teacher model to guide the student's learning on both natural and adversarial examples in all loss terms. We empirically demonstrate the effectiveness of our RSLAD approach over existing adversarial training and distillation methods in improving the robustness of small models against state-of-the-art attacks including the AutoAttack. We also provide a set of understandings on our RSLAD and the importance of robust soft labels for adversarial robustness distillation.


翻译:Adversarial 培训是一种有效的方法,用于培训强大的深心神经网络,防止对抗性攻击。虽然我们能够带来可靠的稳健性,但总体而言,对抗性培训(AT)方法有利于高能力模型,即模型越大,强性越强。这往往限制其在小型模型上的效力,在储存或计算资源非常有限的情况下(例如移动设备),这种模式更可取。在本文中,我们利用知识蒸馏概念,通过从对抗性训练的大型模型中提取精液,提高小型模型的稳健性。我们首先从蒸馏角度重新审视一些最先进的AT方法,并找出一种能够提高稳健性的共同技术:使用强软标签 -- -- 对强性模型的预测。我们提出一种新的对抗性强力蒸馏方法,称为Robust Soft Label Adversarial Distillation(RSLAD) 来培训强性小型学生模型。我们充分利用了由强力(经过敌对性训练的)大量教师模型产生的稳健性软性标签,用以指导我们不断进行激烈性辩论性研究的RSAD(ROD)的所有测试方法。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年10月9日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
1+阅读 · 2021年10月12日
Arxiv
8+阅读 · 2020年8月30日
Arxiv
8+阅读 · 2019年2月15日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员