Large-scale linear models are ubiquitous throughout machine learning, with contemporary application as surrogate models for neural network uncertainty quantification; that is, the linearised Laplace method. Alas, the computational cost associated with Bayesian linear models constrains this method's application to small networks, small output spaces and small datasets. We address this limitation by introducing a scalable sample-based Bayesian inference method for conjugate Gaussian multi-output linear models, together with a matching method for hyperparameter (regularisation) selection. Furthermore, we use a classic feature normalisation method (the g-prior) to resolve a previously highlighted pathology of the linearised Laplace method. Together, these contributions allow us to perform linearised neural network inference with ResNet-18 on CIFAR100 (11M parameters, 100 outputs x 50k datapoints), with ResNet-50 on Imagenet (50M parameters, 1000 outputs x 1.2M datapoints) and with a U-Net on a high-resolution tomographic reconstruction task (2M parameters, 251k output~dimensions).
翻译:大型线性模型在整个机器学习过程中是无处不在的,当代应用是神经网络不确定性量化的替代模型,即线性拉比法。唉,贝叶斯线性模型的计算成本限制了这一方法对小型网络、小型输出空间和小型数据集的应用。我们通过采用可扩缩的基于样本的巴伊西亚线性模型和超光谱(常规化)选择的匹配方法来应对这一限制。此外,我们使用经典特征正常化方法(主要特征法)来解决先前突出的线性拉比法方法的病理学。这些贡献共同使我们能够在CIFAR100上用ResNet-18进行线性神经网络推断(11M参数,100输出x50k数据点),在图像网上采用ResNet-50(50M参数,1000输出x1.2M数据点),在高分辨率的图像重建任务上使用U-Net(2M参数,251K输出~dimenions)。</s>