The advent of automated vehicles operating at SAE levels 4 and 5 poses high fault tolerance demands for all functions contributing to the driving task. At the actuator level, fault-tolerant vehicle motion control, which exploits functional redundancies among the actuators, is one means to achieve the required degree of fault tolerance. Therefore, we give a comprehensive overview of the state of the art in actuator fault-tolerant vehicle motion control with a focus on drive, brake, and steering degradations, as well as tire blowouts. This review shows that actuator fault-tolerant vehicle motion is a widely studied field; yet, the presented approaches differ with respect to many aspects. To provide a starting point for future research, we survey the employed actuator topologies, the tolerated degradations, the presented control approaches, as well as the experiments conducted for validation. Overall, and despite the large number of different approaches, the covered literature reveals the potential of increasing fault tolerance by fault-tolerant vehicle motion control. Thus, besides developing novel approaches or demonstrating real-time applicability, future research should aim at investigating limitations and enabling comparison of fault-tolerant motion control approaches in order to allow for a thorough safety argumentation.


翻译:自动车辆在SAE 4 和 5 级运行,对推动驾驶任务的所有功能都提出了高度的防故障要求。在动因一级,使用驱动器功能冗余的防过错车辆动作控制是达到必要程度的容错程度的一种手段,因此,我们全面概述了驱动器容错车辆动作控制方面的先进水平,重点是驱动器、刹车和驾驶器退化以及轮胎爆炸。审查表明,动因容错车辆运动是一个广泛研究的领域;然而,所提出的方法在许多方面各不相同。为提供未来研究的起点,我们调查了已使用的动因结构、可容错位退化、提出的控制方法以及进行验证的实验。总体而言,尽管采取了许多不同的做法,但覆盖的文献揭示了因容错车辆动作控制而增加的容错程度的可能性。因此,除了制定新的办法或表明实时适用性外,今后的研究应着眼于调查限制和比较容错动控制方法,以便能够进行彻底的安全论证。

0
下载
关闭预览

相关内容

专知会员服务
122+阅读 · 2021年3月22日
专知会员服务
39+阅读 · 2020年9月6日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Fault Localization in Cloud using Centrality Measures
Arxiv
12+阅读 · 2021年6月21日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员