Positive dependence is present in many real world data sets and has appealing stochastic properties that can be exploited in statistical modeling and in estimation. In particular, the notion of multivariate total positivity of order 2 ($\text{MTP}_2$) is a convex constraint and acts as an implicit regularizer in the Gaussian case. We study positive dependence in multivariate extremes and introduce $\text{EMTP}_2$, an extremal version of $\text{MTP}_2$. This notion turns out to appear prominently in extremes and, in fact, it is satisfied by many classical models. For a H\"usler--Reiss distribution, the analogue of a Gaussian distribution in extremes, we show that it is $\text{EMTP}_2$ if and only if its precision matrix is a Laplacian of a connected graph. We propose an estimator for the parameters of the H\"usler--Reiss distribution under $\text{EMTP}_2$ as the solution of a convex optimization problem with Laplacian constraint. We prove that this estimator is consistent and typically yields a sparse model with possibly non-decomposable extremal graphical structure. At the example of real data, we illustrate this regularization and the superior performance compared to existing methods.


翻译:在许多真实的世界数据集中都存在正依赖性,并且具有在统计模型和估计中可以加以利用的具有吸引力的随机特性。特别是,第2号单项的多变总正率概念($\text{MTP} ⁇ 2$)是一个曲线限制,在高西亚案中是一种隐含的常规。我们在多变极端中研究正依赖性,并引入了$\text{EMTP}2$的极端版本。这个概念在极端中显得显着,事实上它为许多古典模型所满足。对于第2号单项的“usler-Reiss”分布,我们显示高斯分布的模拟是一个曲线限制,在高斯案例中是一种隐含的常规约束。我们研究的是多变极端极端中的正统性依赖性,并且只有在其精确矩阵是相关图形的拉氏-Reversal分布参数时,我们提议在 $\ text{EMTP}2$下对“usls” 分布的参数进行估算。这个概念在极端中显得十分突出,事实上它被许多古典模式的公式优化分配的解决方案的解决方案,我们证明这个典型的模型和高正压性模型的模型的模型的模型的模型的模型的模型的模型是稳定的模型的模型性压压力。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月3日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员