For a constant $d$, the $d$-Path Vertex Cover problem ($d$-PVC) is as follows: Given an undirected graph and an integer $k$, find a subset of at most $k$ vertices of the graph, such that their deletion results in a graph not containing a path on $d$ vertices as a subgraph. We develop a framework to automatically generate parameterized branching algorithms for the problem and obtain algorithms outperforming those previously known for $3 \le d \le 8$. E.g., we show that $5$-PVC can be solved in $O(2.7^k\cdot n^{O(1)})$ time.
翻译:对于一个恒定的美元, 美元- Path Vertex 封面问题 (dd- PVC) 如下: 如果有一个未方向的图表和整数的美元, 则在图表中找到一个最多为 $k$ 的子节, 这样, 它们的删除会在图表中得出一个不包含 $d$ 顶点作为子图的路径的图。 我们开发了一个框架, 以自动生成问题的参数化分流算法, 并获取的算法优于以前已知的 $ 3\le d\le 8$ 的算法。 例如, 我们显示, $2.7\ k\ cdot n {O(1)} 时间可以解决 $( 2.7\ k\ cdot n {O(1)} 。