In this work, we consider $d$-{\sc Hyperedge Estimation} and $d$-{\sc Hyperedge Sample} problem in a hypergraph $\cH(U(\cH),\cF(\cH))$ in the query complexity framework, where $U(\cH)$ denotes the set of vertices and $\cF(\cH)$ denotes the set of hyperedges. The oracle access to the hypergraph is called {\sc Colorful Independence Oracle} ({\sc CID}), which takes $d$ (non-empty) pairwise disjoint subsets of vertices $\dsubset \subseteq U(\cH)$ as input, and answers whether there exists a hyperedge in $\cH$ having (exactly) one vertex in each $A_i, i \in \{1,2,\ldots,d\}$. The problem of $d$-{\sc Hyperedge Estimation} and $d$-{\sc Hyperedge Sample} with {\sc CID} oracle access is important in its own right as a combinatorial problem. Also, Dell {\it{et al.}}~[SODA '20] established that {\em decision} vs {\em counting} complexities of a number of combinatorial optimization problems can be abstracted out as $d$-{\sc Hyperedge Estimation} problems with a {\sc CID} oracle access. The main technical contribution of the paper is an algorithm that estimates $m= \size{\cF(\cH)}$ with $\hat{m}$ such that { $$ \frac{1}{C_{d}\log^{d-1} n} \;\leq\; \frac{\hat{m}}{m} \;\leq\; C_{d} \log ^{d-1} n . $$ by using at most $C_{d}\log ^{d+2} n$ many {\sc CID} queries, where $n$ denotes the number of vertices in the hypergraph $\cH$ and $C_{d}$ is a constant that depends only on $d$}. Our result coupled with the framework of Dell {\it{et al.}}~[SODA '21] implies improved bounds for a number of fundamental problems.


翻译:在这项工作中,我们考虑在查询复杂框架中的超额交易 $(美元)和美元(美元) 美元(美元),在查询复杂框架里,美元(美元)表示的是一套顶点和美元(美元)表示的是一套顶点。 进入高点的奥克莱尔称为(美元) 彩色独立 Orcle} (美元),这需要美元(非空白) 美元(美元),在查询复杂框架里, 美元(美元) 表示的是一套高点, 美元(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) 美元) 美元(c)(c)(c)(c) 美元) 美元(c)(c)(c) 美元(c)(c)(c)(c) 美元), 美元(c(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) 美元) 美元(d(c)(c)(c)(c) 美元) 美元(美元) 美元(d(c)(c)(c)(c)(c)(c)(c) 美元) 美元) 美元) 美元(c(c(c)(c)(c)(c)(c)(c)(c) 美元) 美元) 美元) 美元) 美元) 美元)和(c(c)(美元) (c)(美元) 美元) 美元) 美元) (美元) 美元) 美元) 美元(c(美元) (美元) (c(d(d(c(c)(也表示(c)(也表示) (a(c)(也表示) (c) (c)(美元) (c)(美元) (c) (c)(a) (c) (c) (c)(a) (c)(a) (c) (c) (c)(美元) (c) (c) (c) (c)(美元) 美元) (c)(美元) (c) (c) (c)(a) (c) (c) 美元) (c) ) (c)(a) (c) (c) (c) (c) (c) 美元) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
专知会员服务
85+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员