Place recognition is a key module in robotic navigation. The existing line of studies mostly focuses on visual place recognition to recognize previously visited places solely based on their appearance. In this paper, we address structural place recognition by recognizing a place based on structural appearance, namely from range sensors. Extending our previous work on a rotation invariant spatial descriptor, the proposed descriptor completes a generic descriptor robust to both rotation (heading) and translation when roll-pitch motions are not severe. We introduce two sub-descriptors and enable topological place retrieval followed by the 1-DOF semi-metric localization thereby bridging the gap between topological place retrieval and metric localization. The proposed method has been evaluated thoroughly in terms of environmental complexity and scale. The source code is available and can easily be integrated into existing LiDAR simultaneous localization and mapping (SLAM).
翻译:位置识别是机器人导航中的一个关键模块。 现有的研究大都侧重于视觉定位识别, 仅以其外观为基础识别先前访问过的地方。 在本文中, 我们通过识别一个基于结构外观的场所, 即来自射程传感器的场所, 来解决结构定位识别问题。 扩展我们先前关于空间自变描述器的轮用工作, 拟议的描述符在滚动- pitch 动作不严重时, 将完成一个强于旋转( 标题) 的通用描述符, 并进行翻译。 我们引入了两个子描述符, 并允许地形定位检索, 之后是1- DOF 半计量本地化, 从而缩小了表层学位置检索和计量本地化之间的差距。 拟议的方法已经在环境复杂性和规模方面得到了彻底评估。 源代码可以使用, 并很容易融入现有的LIDAR 同步定位和绘图( SLAM) 。