Radar charts are widely used to visualize multivariate data and compare multiple profiles across features. However, the visual clarity of radar charts can be severely compromised when feature values alternate drastically in magnitude around the circle, causing areas to collapse, which misrepresents relative differences. In the present work we introduce a permutation optimization strategy that reorders features to minimize polygon ``spikiness'' across multiple profiles simultaneously. The method is combinatorial (exhaustive search) for moderate numbers of features and uses a lexicographic minimax criterion that first considers overall smoothness (mean jump) and then the largest single jump as a tie-breaker. This preserves more global information and produces visually balanced arrangements. We discuss complexity, practical bounds, and relations to existing approaches that either change the visualization (e.g., OrigamiPlot) or learn orderings (e.g., Versatile Ordering Network). An example with two profiles and $p=6$ features (before/after ordering) illustrates the qualitative improvement. Keywords: data visualization, radar charts, combinatorial optimization, minimax optimization, feature ordering
翻译:暂无翻译