In recent years, deep learning approaches have achieved state-of-the-art results in the analysis of point cloud data. In cosmology, galaxy redshift surveys resemble such a permutation invariant collection of positions in space. These surveys have so far mostly been analysed with two-point statistics, such as power spectra and correlation functions. The usage of these summary statistics is best justified on large scales, where the density field is linear and Gaussian. However, in light of the increased precision expected from upcoming surveys, the analysis of -- intrinsically non-Gaussian -- small angular separations represents an appealing avenue to better constrain cosmological parameters. In this work, we aim to improve upon two-point statistics by employing a \textit{PointNet}-like neural network to regress the values of the cosmological parameters directly from point cloud data. Our implementation of PointNets can analyse inputs of $\mathcal{O}(10^4) - \mathcal{O}(10^5)$ galaxies at a time, which improves upon earlier work for this application by roughly two orders of magnitude. Additionally, we demonstrate the ability to analyse galaxy redshift survey data on the lightcone, as opposed to previously static simulation boxes at a given fixed redshift.
翻译:近年来,深层次的学习方法在分析点云数据方面取得了最先进的结果。在宇宙学中,星系的变换式调查类似于这种空间位置的变异性收集。迄今为止,这些调查大多是用两点统计分析的,例如电光谱和关联功能。在密度字段为线性的大型和高西亚的大型范围内,使用这些汇总统计数据最有理。然而,鉴于预期即将到来的调查将会提高精确度,对 -- -- 本质上不是加西 -- -- 小角星系的分析代表了更好地限制宇宙参数的诱人途径。在这项工作中,我们的目标是通过使用“textit{PointNet]-类似神经网络的两点统计改进两点统计,以便直接从点云数据中反移宇宙参数值。我们实施PointNet可以分析$\mathcal{O}(10+4) -\mathcal{O}-aphcal{O}10-5美元星系的小型星系的分析,通过大约两个星级级的固定级变换式的固定星系来改进先前应用工作。此外,我们展示了先前的固定星系数据的能力。