Dimension is an inherent bottleneck to some modern learning tasks, where optimization methods suffer from the size of the data. In this paper, we study non-isotropic distributions of data and develop tools that aim at reducing these dimensional costs by a dependency on an effective dimension rather than the ambient one. Based on non-asymptotic estimates of the metric entropy of ellipsoids -- that prove to generalize to infinite dimensions -- and on a chaining argument, our uniform concentration bounds involve an effective dimension instead of the global dimension, improving over existing results. We show the importance of taking advantage of non-isotropic properties in learning problems with the following applications: i) we improve state-of-the-art results in statistical preconditioning for communication-efficient distributed optimization, ii) we introduce a non-isotropic randomized smoothing for non-smooth optimization. Both applications cover a class of functions that encompasses empirical risk minization (ERM) for linear models.


翻译:维度是某些现代学习任务的内在瓶颈,在这些现代学习任务中,优化方法受数据大小的影响。在本文中,我们研究数据的非地球分布,并开发一些工具,通过依赖有效维度而不是环境维度来降低这些维度成本。根据对环球虫球球球球球球体的不被动估计,这些估计证明可以概括到无限维度 -- -- 在链条论的论据中,我们的统一集中界限涉及一个有效的维度,而不是全球维度,比现有结果有所改进。我们在以下应用的学习问题中表现出利用非地球特性的重要性:一)我们改进通信高效分布优化的统计先决条件方面的先进结果,二)我们引入非地球同步随机滑动的非地球光滑动,两种应用都涵盖包括线性模型的经验风险分解(ERM)在内的一系列功能。

0
下载
关闭预览

相关内容

经验风险是对训练集中的所有样本点损失函数的平均最小化。经验风险越小说明模型f(X)对训练集的拟合程度越好。
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
7+阅读 · 2020年10月9日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员