We consider a general queueing model with price-sensitive customers in which the service provider seeks to balance two objectives, maximizing the average revenue rate and minimizing the average queue length. Customers arrive according to a Poisson process, observe an offered price, and decide to join the queue if their valuation exceeds the price. The queue is operated first-in first-out, and the service times are exponential. Our model represents applications in areas like make-to-order manufacturing, cloud computing, and food delivery. The optimal solution for our model is dynamic; the price changes as the state of the system changes. However, such dynamic pricing policies may be undesirable for a variety of reasons. In this work, we provide performance guarantees for a simple and natural class of static pricing policies which charge a fixed price up to a certain occupancy threshold and then allow no more customers into the system. We provide a series of results showing that such static policies can simultaneously guarantee a constant fraction of the optimal revenue with at most a constant factor increase in expected queue length. For instance, our policy for the M/M/1 setting allows bi-criteria approximations of $(0.5, 1), (0.66, 1.16), (0.75, 1.54)$ and $(0.8, 2)$ for the revenue and queue length, respectively. We also provide guarantees for settings with multiple customer classes and multiple servers, as well as the expected sojourn time objective.
翻译:暂无翻译