Free-breathing cardiac MRI schemes are emerging as competitive alternatives to breath-held cine MRI protocols, enabling applicability to pediatric and other population groups that cannot hold their breath. Because the data from the slices are acquired sequentially, the cardiac/respiratory motion patterns may be different for each slice; current free-breathing approaches perform independent recovery of each slice. In addition to not being able to exploit the inter-slice redundancies, manual intervention or sophisticated post-processing methods are needed to align the images post-recovery for quantification. To overcome these challenges, we propose an unsupervised variational deep manifold learning scheme for the joint alignment and reconstruction of multislice dynamic MRI. The proposed scheme jointly learns the parameters of the deep network as well as the latent vectors for each slice, which capture the motion-induced dynamic variations, from the k-t space data of the specific subject. The variational framework minimizes the non-uniqueness in the representation, thus offering improved alignment and reconstructions.
翻译:自由呼吸心脏磁共振成像仪方案正在成为呼吸中管锥体磁共振成像协议的竞争性替代品,从而能够适用于无法屏住呼吸的儿科和其他人口群体。由于切片的数据是按顺序获得的,因此每个切片的心/呼吸运动模式可能不同;目前的自由呼吸方法对每个切片进行独立恢复。除了不能利用隔热重复、人工干预或复杂的后处理方法来调整恢复后的图像以进行量化外,还需要用人工干预或先进的后处理方法来调整图像。为了克服这些挑战,我们提议了一个不受监督的深度变异多功能学习计划,以联合调整和重建多虱体动力MRI。拟议方案从特定对象的K-t空间数据中共同学习深度网络的参数以及每个切片的潜在矢量,以捕捉运动引发的动态变异。变框架将代表面的非异性降到最低程度,从而提供更好的调整和重建。