Improving the robustness of neural nets in regression tasks is key to their application in multiple domains. Deep learning-based approaches aim to achieve this goal either by improving their prediction of specific values (i.e., point prediction), or by producing prediction intervals (PIs) that quantify uncertainty. We present PIVEN, a deep neural network for producing both a PI and a prediction of specific values. Unlike previous studies, PIVEN makes no assumptions regarding data distribution inside the PI, making its point prediction more effective for various real-world problems. Benchmark experiments show that our approach produces tighter uncertainty bounds than the current state-of-the-art approach for producing PIs, while maintaining comparable performance to the state-of-the-art approach for specific value-prediction. Additional evaluation on large image datasets further support our conclusions.
翻译:在回归任务中提高神经网的稳健性是将其应用于多个领域的关键。深层次的基于学习的方法旨在通过改进对具体值(即点预测)的预测,或者通过产生量化不确定性的预测间隔(PI)来实现这一目标。我们介绍了PIVEN,这是一个用于生产PI和预测具体值的深层神经网络。与以往的研究不同,PIVEN没有就PI内部的数据分布做出任何假设,从而使其点预测对各种现实世界问题更加有效。基准实验表明,我们的方法比目前生产PIS的最新方法产生更严格的不确定性,同时保持与特定价值定位最新方法的可比性能。对大型图像数据集的额外评估进一步支持了我们的结论。