Physical motion models offer interpretable predictions for the motion of vehicles. However, some model parameters, such as those related to aero- and hydrodynamics, are expensive to measure and are often only roughly approximated reducing prediction accuracy. Recurrent neural networks achieve high prediction accuracy at low cost, as they can use cheap measurements collected during routine operation of the vehicle, but their results are hard to interpret. To precisely predict vehicle states without expensive measurements of physical parameters, we propose a hybrid approach combining deep learning and physical motion models including a novel two-phase training procedure. We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model, which limits the uncertainty introduced by the neural network to a known quantity. We have evaluated our approach for the use case of ship and quadcopter motion. The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
翻译:物理运动模型为车辆运动提供了可解释的预测,然而,一些模型参数,例如与空气和流体动力学有关的参数,测量费用昂贵,而且往往只是大致上可以降低预测准确性;经常神经网络以低成本实现高预测准确性,因为它们可以使用在车辆日常运行期间收集的廉价测量数据,但其结果难以解释;精确地预测车辆状态,而不对物理参数进行昂贵的测量,我们提议一种混合方法,将深层学习和物理运动模型,包括新的两阶段培训程序结合起来;我们通过将深神经网络的产出范围作为混合模型的一部分,将神经网络带来的不确定性限制在已知的数量,实现可解释性;我们评估了我们使用船舶和四氯三氟磷运动的方法;结果显示,我们的混合模型可以改进模型的可解释性,与现有的深层学习方法相比,其准确性不会降低。