Physical motion models offer interpretable predictions for the motion of vehicles. However, some model parameters, such as those related to aero- and hydrodynamics, are expensive to measure and are often only roughly approximated reducing prediction accuracy. Recurrent neural networks achieve high prediction accuracy at low cost, as they can use cheap measurements collected during routine operation of the vehicle, but their results are hard to interpret. To precisely predict vehicle states without expensive measurements of physical parameters, we propose a hybrid approach combining deep learning and physical motion models including a novel two-phase training procedure. We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model, which limits the uncertainty introduced by the neural network to a known quantity. We have evaluated our approach for the use case of ship and quadcopter motion. The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.


翻译:物理运动模型为车辆运动提供了可解释的预测,然而,一些模型参数,例如与空气和流体动力学有关的参数,测量费用昂贵,而且往往只是大致上可以降低预测准确性;经常神经网络以低成本实现高预测准确性,因为它们可以使用在车辆日常运行期间收集的廉价测量数据,但其结果难以解释;精确地预测车辆状态,而不对物理参数进行昂贵的测量,我们提议一种混合方法,将深层学习和物理运动模型,包括新的两阶段培训程序结合起来;我们通过将深神经网络的产出范围作为混合模型的一部分,将神经网络带来的不确定性限制在已知的数量,实现可解释性;我们评估了我们使用船舶和四氯三氟磷运动的方法;结果显示,我们的混合模型可以改进模型的可解释性,与现有的深层学习方法相比,其准确性不会降低。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
32+阅读 · 2021年3月8日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
6+阅读 · 2019年3月19日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员