Homomorphic encryption (HE) is a promising privacy-preserving technique for cross-silo federated learning (FL), where organizations perform collaborative model training on decentralized data. Despite the strong privacy guarantee, general HE schemes result in significant computation and communication overhead. Prior works employ batch encryption to address this problem, but it is still suboptimal in mitigating communication overhead and is incompatible with sparsification techniques. In this paper, we propose FLASHE, an HE scheme tailored for cross-silo FL. To capture the minimum requirements of security and functionality, FLASHE drops the asymmetric-key design and only involves modular addition operations with random numbers. Depending on whether to accommodate sparsification techniques, FLASHE is optimized in computation efficiency with different approaches. We have implemented FLASHE as a pluggable module atop FATE, an industrial platform for cross-silo FL. Compared to plaintext training, FLASHE slightly increases the training time by $\leq6\%$, with no communication overhead.
翻译:同性恋加密(HE)是一种很有希望的跨筒式联合学习保护隐私技术(FL),在这种技术中,各组织对分散的数据进行合作模式培训。尽管有很强的隐私保障,但一般HE计划导致大量的计算和通信管理费。先前的工程采用批量加密来解决这个问题,但在减轻通信间接费用方面仍然不够理想,而且与封闭技术不相容。在本文中,我们提议FLASHE计划是针对交叉筒式FL的。为了了解安全和功能的最低要求,FLASHE将非对称钥匙设计丢弃,而只涉及随机数字的模块添加操作。取决于是否适合喷雾技术,FLASHE在采用不同方法计算效率时得到了优化。我们实施了FLASHE作为跨筒式FATE的可插入模块,这是跨筒式FATE的工业平台,与普通文本培训相比,FLASHE略有增加培训时间$\leq6 ⁇,没有通信管理费。