Secure linear aggregation is to linearly aggregate private inputs of different users with privacy protection. The server in a federated learning (FL) environment can fulfill any linear computation on private inputs of users through the secure linear aggregation. At present, based on pseudo-random number generator and one-time padding technique, one can efficiently compute the sum of user inputs in FL, but linear calculations of user inputs are not well supported. Based on decentralized threshold additive homomorphic encryption (DTAHE) schemes, this paper provides a secure linear aggregation protocol, which allows the server to multiply the user inputs by any coefficients and to sum them together, so that the server can build a full connected layer or a convolution layer on top of user inputs. The protocol adopts the framework of Bonawitz et al. to provide fault tolerance for user dropping out, and exploits a blockchain smart contract to encourage the server honest. The paper gives a security model, security proofs and a concrete lattice based DTAHE scheme for the protocol. It evaluates the communication and computation costs of known DTAHE construction methods. The evaluation shows that an elliptic curve based DTAHE is friendly to users and the lattice based version leads to a light computation on the server.
翻译:安全线性汇总是指将不同用户的私人投入与隐私保护进行线性汇总。 在联合学习(FL)环境中,服务器可以通过安全的线性聚合,完成用户私人投入的任何线性计算。目前,根据假随机数字生成器和一次性挂接技术,可以有效地计算FL用户投入的总和,但用户投入的线性计算没有很好地支持。根据分散的临界阈值添加同色加密(DTAHE)计划,本文件提供了一个安全的线性汇总协议,使服务器能够以任何系数将用户投入增加,并把它们相加在一起,以便服务器能够在用户投入的顶部建立一个完全连接层或相承接层。协议采用了Bonawitz 等人的框架,为用户退出提供了过错容忍度,并利用了块链智能合同鼓励服务器诚实地运行。该文件为协议提供了一个安全模型、安全证据和基于混凝土的 DTAHEHE 计划。它评估了已知的DTAHE建筑方法的通信和计算成本。评估显示,基于DAHE的流曲线在服务器上进行轻度计算,使用户能够使用DHTHE的用户使用。