We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. Moreover, we apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods.
翻译:我们建议一种基于学习的稳健预测控制算法,以弥补某类离散时间系统动态中的显著不确定性,这些系统名义上是线性的,具有添加非线性成分。这些系统通常模拟未知环境对名义系统的非线性效应。我们优化了非线性反馈政策,这些政策的灵感来自相当于“估计和取消”的确定性,在古典适应性控制中率先采用的非线性控制法,以便在存在大范围的不确定性的情况下实现显著的性能改进,在这种环境中,现有的基于学习的预测性控制算法常常为保障安全而挣扎。与以往在强大的适应性MPC中开展的工作不同,我们的方法使我们能够利用通过功能接近学得的先前未知动态中的结构(即数字预测 ) 。我们的方法还将典型的非线性适应性控制方法扩展到具有状态和输入限制的系统,即使我们不能直接取消从动态中产生的添加性不确定功能。此外,我们运用现代统计估计技术,通过高概率的持续约束性满意度来验证系统的安全性。最后,我们在模拟中表明,我们的方法可以比现有方法更显著地适应未知的动态条件。