Proteins are miniature machines whose function depends on their three-dimensional (3D) structure. Determining this structure computationally remains an unsolved grand challenge. A major bottleneck involves selecting the most accurate structural model among a large pool of candidates, a task addressed in model quality assessment. Here, we present a novel deep learning approach to assess the quality of a protein model. Our network builds on a point-based representation of the atomic structure and rotation-equivariant convolutions at different levels of structural resolution. These combined aspects allow the network to learn end-to-end from entire protein structures. Our method achieves state-of-the-art results in scoring protein models submitted to recent rounds of CASP, a blind prediction community experiment. Particularly striking is that our method does not use physics-inspired energy terms and does not rely on the availability of additional information (beyond the atomic structure of the individual protein model), such as sequence alignments of multiple proteins.
翻译:蛋白质是微型机器,其功能取决于其三维(3D)结构。确定这一结构的计算仍是一个尚未解决的巨大挑战。一个主要瓶颈是在大批候选人中选择最准确的结构模型,这是模型质量评估中处理的一项任务。在这里,我们提出了一个新的深层次的学习方法来评估蛋白质模型的质量。我们的网络以原子结构的点基表示和结构分辨率不同层次的旋转-等同变体为基础。这些综合方面使网络能够从整个蛋白结构中学习端到端。我们的方法在向最近几轮CASP(盲目预测社区实验)提交的蛋白模型评分中取得了最新的结果。特别引人注目的是,我们的方法不使用物理激发的能源术语,也不依赖额外信息的可用性(超越个体蛋白模型的原子结构),例如多种蛋白质的序列对齐。