The article is about algorithms for learning Bayesian hierarchical models, the computational complexity of which scales linearly with the number of observations and the number of parameters in the model. It focuses on crossed random effect and nested multilevel models, which are used ubiquitously in applied sciences, and illustrates the methodology on two challenging real data analyses on predicting electoral results and real estate prices respectively. The posterior dependence in both classes is sparse: in crossed random effects models it resembles a random graph, whereas in nested multilevel models it is tree-structured. For each class we develop a framework for scalable computation. We provide a number of negative (for crossed) and positive (for nested) results for the scalability (or lack thereof) of methods based on sparse linear algebra, which are relevant also to Laplace approximation methods for such models. Our numerical experiments compare with off-the-shelf variational approximations and Hamiltonian Monte Carlo. Our theoretical results, although partial, are useful in suggesting interesting methodologies and lead to conclusions that our numerics suggest to hold well beyond the scope of the underlying assumptions.


翻译:文章是关于学习巴伊西亚等级模型的算法, 其计算复杂性是用观测数量和模型参数数的线性尺度来计算。 它侧重于跨随机效应和嵌套多层次模型, 应用科学中普遍使用, 并展示了两种具有挑战性的实际数据分析方法, 分别用于预测选举结果和房地产价格。 两类的后继依赖性都很少: 在跨随机效应模型中, 它类似于随机图, 在嵌套的多层次模型中, 它是树形结构的。 对于每类, 我们开发了一个可缩放的计算框架。 我们提供了一些基于稀疏线性代数方法的可缩放性( 跨) 和正( 嵌套) 的结果, 这与这些模型的Laplace近似方法有关。 我们的数值实验与现成的变近似和汉密尔顿· 蒙特卡洛的数值比较, 虽然只是局部的, 但有助于提出有趣的方法, 并得出这样的结论, 我们的数字表明我们的数字显示远远超出基本假设的范围。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
0+阅读 · 2021年10月16日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员