Click-through rate (CTR) prediction, whose aim is to predict the probability of whether a user will click on an item, is an essential task for many online applications. Due to the nature of data sparsity and high dimensionality in CTR prediction, a key to making effective prediction is to model high-order feature interaction among feature fields. To explicitly model high-order feature interaction, an efficient way is to perform inner product of feature embeddings with self-attentive neural networks. To better model complex feature interaction, in this paper we propose a novel DisentanglEd Self-atTentIve NEtwork (DESTINE) framework for CTR prediction that explicitly decouples the computation of unary importance from pairwise interaction. Specifically, the unary term models the general impact of one feature on all other features, whereas the whitened pairwise interaction term contributes to learning the pure importance score for each feature interaction. We conduct extensive experiments framework using two real-world benchmark datasets. The results show that DESTINE not only maintains computational efficiency but obtains performance improvements over state-of-the-art baselines.
翻译:点击通速(CTR)预测的目的是预测用户是否点击某个项目的概率,这是许多在线应用程序的一项基本任务。由于数据宽度和CTR预测中高度维度的性质,有效预测的关键是模拟各功能领域之间的高阶互动。为了明确模拟高阶特征互动,一种高效的方法是执行与自惯神经网络嵌入的功能内嵌特性的内产物。为了更好地模拟复杂的特征互动,我们在本文件中提议为CTR预测建立一个新的DisentanglEd Self-at-TentIve NESTINE(DESTINE)框架,该框架明确区分了从双向互动中计算单向重要性的计算。具体地说,一个特性对所有其他特征的一般影响是单词模型,而白对齐互动术语有助于学习每个特征互动的纯重要性分数。我们使用两个真实世界基准数据集进行了广泛的实验框架。结果显示,DESSTINE不仅保持计算效率,而且获得了在状态基准基线上的绩效改进。