Hebbian plasticity in winner-take-all (WTA) networks is highly attractive for neuromorphic on-chip learning, owing to its efficient, local, unsupervised, and on-line nature. Moreover, its biological plausibility may help overcome important limitations of artificial algorithms, such as their susceptibility to adversarial attacks and long training time. However, Hebbian WTA learning has found little use in machine learning (ML), likely because it has been missing an optimization theory compatible with deep learning (DL). Here we show rigorously that WTA networks constructed by standard DL elements, combined with a Hebbian-like plasticity that we derive, maintain a Bayesian generative model of the data. Importantly, without any supervision, our algorithm, SoftHebb, minimizes cross-entropy, i.e. a common loss function in supervised DL. We show this theoretically and in practice. The key is a "soft" WTA where there is no absolute "hard" winner neuron. Strikingly, in shallow-network comparisons with backpropagation (BP), SoftHebb shows advantages beyond its Hebbian efficiency. Namely, it converges faster and is significantly more robust to noise and adversarial attacks. Notably, attacks that maximally confuse SoftHebb are also confusing to the human eye, potentially linking human perceptual robustness, with Hebbian WTA circuits of cortex. Finally, SoftHebb can generate synthetic objects as interpolations of real object classes. All in all, Hebbian efficiency, theoretical underpinning, cross-entropy-minimization, and surprising empirical advantages, suggest that SoftHebb may inspire highly neuromorphic and radically different, but practical and advantageous learning algorithms and hardware accelerators.
翻译:在赢者吞并(WTA)网络中,Hebbrian WTA的整形性能对于神经神经变形在芯片上学习具有高度的吸引力,因为其效率高、地方性强、不受监管和在线性质。此外,其生物光学性能可能有助于克服人工算法的重要局限性,例如它们容易受到对抗性攻击和漫长的培训时间。然而,Hebbbian WTA的学习在机器学习(ML)中发现很少使用,可能因为它缺少一个与深层次学习(DL)相兼容的优化理论。这里我们严格地表明,由标准 DL 元素构建的WTA网络,加上我们生成的Hebbian相似的整形塑性造型,保持数据Bayesian的基因化模型模型模型。重要的是,在没有任何监督的情况下,我们的算法,SoftHephebbbbb 将交叉性效率降到了最低程度。 我们从理论上和实践上看,“软”WTATA”是没有绝对“硬赢家”的神经硬性硬性硬性硬性硬性硬性硬性硬性。因此,所有的跨网络比较, 直立地, 和跨的比, 直立地, 直立地, 直立地, 直立地, 直立地, 直立地, 直立地, 直立地, 直立的逻辑性对立的逻辑性对立的逻辑性对立性对立性对立性对立性对立性对立性对立性对立性变的逻辑性变的逻辑性变的逻辑性变的逻辑性变的逻辑性变的逻辑性变的逻辑性变的逻辑性变的逻辑性变的逻辑性变的逻辑性变的逻辑性变的逻辑性变的逻辑性变的逻辑性变的逻辑性变, 和直向的逻辑性变的逻辑性, 也表明, 也表明, 直向性变性变性变性变性变性变性变性变性变的逻辑性变性变性变性变性变性变性变性变性变性变的逻辑性变性变性变性变性变性变性变性变性变性变性变性变性能性