Mean-Field Control (MFC) is a powerful tool to solve Multi-Agent Reinforcement Learning (MARL) problems. Recent studies have shown that MFC can well-approximate MARL when the population size is large and the agents are exchangeable. Unfortunately, the presumption of exchangeability implies that all agents uniformly interact with one another which is not true in many practical scenarios. In this article, we relax the assumption of exchangeability and model the interaction between agents via an arbitrary doubly stochastic matrix. As a result, in our framework, the mean-field `seen' by different agents are different. We prove that, if the reward of each agent is an affine function of the mean-field seen by that agent, then one can approximate such a non-uniform MARL problem via its associated MFC problem within an error of $e=\mathcal{O}(\frac{1}{\sqrt{N}}[\sqrt{|\mathcal{X}|} + \sqrt{|\mathcal{U}|}])$ where $N$ is the population size and $|\mathcal{X}|$, $|\mathcal{U}|$ are the sizes of state and action spaces respectively. Finally, we develop a Natural Policy Gradient (NPG) algorithm that can provide a solution to the non-uniform MARL with an error $\mathcal{O}(\max\{e,\epsilon\})$ and a sample complexity of $\mathcal{O}(\epsilon^{-3})$ for any $\epsilon >0$.


翻译:常规战地控制( MFC) 是解决多点强化学习( MARL) 问题的有力工具 。 最近的研究显示, MFC 在人口规模大且代理商可以互换的情况下, 能够非常接近 MARL 。 不幸的是, 套用互换性假设意味着所有代理商在很多实际假想中都相互一致地互动, 而在许多实际假想中, 情况并非如此。 在本篇文章中, 我们放松了对可互换性的假设, 并通过一个任意的双轨式矩阵来模拟代理商之间的互动。 因此, 在我们的框架中, 不同代理商的“ 外观” “ 外观 ” 。 我们证明, 如果每个代理商的奖赏是该代理商所看到的平均场的缩略函数。 那么, 在一个错误中, 所有的MARL( grac) (\\\\\ sqrqrq) {NAR_ mal_ cal_ cal_ assal_ assal_ assal_ assal_ a anqal_ lax_ gal_ gal_ assal_ gal_ ass_ ass_ ass_ ass_ a assal_ dal_ assal_ a_ a__________xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

Microsoft Foundation Class Library 微软基础类库
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月18日
Perturbation theory of transfer function matrices
Arxiv
0+阅读 · 2022年7月15日
Arxiv
0+阅读 · 2022年7月15日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员