The multi-robot adaptive sampling problem aims at finding trajectories for a team of robots to efficiently sample the phenomenon of interest within a given endurance budget of the robots. In this paper, we propose a robust and scalable approach using decentralized Multi-Agent Reinforcement Learning for cooperated Adaptive Sampling (MARLAS) of quasi-static environmental processes. Given a prior on the field being sampled, the proposed method learns decentralized policies for a team of robots to sample high-utility regions within a fixed budget. The multi-robot adaptive sampling problem requires the robots to coordinate with each other to avoid overlapping sampling trajectories. Therefore, we encode the estimates of neighbor positions and intermittent communication between robots into the learning process. We evaluated MARLAS over multiple performance metrics and found it to outperform other baseline multi-robot sampling techniques. We further demonstrate robustness to communication failures and scalability with both the size of the robot team and the size of the region being sampled. The experimental evaluations are conducted both in simulations on real data and in real robot experiments on demo environmental setup.
翻译:多机器人适应性取样问题旨在为一组机器人寻找轨迹,以便有效地在机器人的一定耐力预算范围内对感兴趣的现象进行取样。在本文件中,我们提议采用一种稳健和可扩展的方法,采用分散的多代理强化学习方法,对准静态环境过程进行合作的适应性取样(MARLAS),我们通过多种性能衡量标准对MARLAS进行了评估,发现它比其他基线多机器人取样技术要强。我们进一步证明机器人团队在固定预算范围内对高功率地区进行取样的分散政策。多机器人适应性取样问题要求机器人相互协调,以避免取样轨迹重叠。因此,我们将邻居位置的估计数和机器人间歇性通信纳入学习过程。我们用多种性能衡量标准对MARLAS进行了评估,发现它比其他基线多机器人取样技术要强。我们进一步证明,与机器人团队的规模和正在取样的区域的规模相比,通信失灵和可伸缩性都很强。实验性评估是在模拟真实数据以及演示环境设置的实际机器人实验中进行的。