Deep learning has enjoyed tremendous success in a variety of applications but its application to quantile regressions remains scarce. A major advantage of the deep learning approach is its flexibility to model complex data in a more parsimonious way than nonparametric smoothing methods. However, while deep learning brought breakthroughs in prediction, it often lacks interpretability due to the black-box nature of multilayer structure with millions of parameters, hence it is not well suited for statistical inference. In this paper, we leverage the advantages of deep learning to apply it to quantile regression where the goal to produce interpretable results and perform statistical inference. We achieve this by adopting a semiparametric approach based on the partially linear quantile regression model, where covariates of primary interest for statistical inference are modelled linearly and all other covariates are modelled nonparametrically by means of a deep neural network. In addition to the new methodology, we provide theoretical justification for the proposed model by establishing the root-$n$ consistency and asymptotically normality of the parametric coefficient estimator and the minimax optimal convergence rate of the neural nonparametric function estimator. Across several simulated and real data examples, our proposed model empirically produces superior estimates and more accurate predictions than various alternative approaches.


翻译:深层学习在各种应用中取得了巨大成功,但在对微量回归的应用中却仍然很少应用。深层学习方法的主要优点是灵活地以比非对称平滑法更简单的方式模拟复杂数据。然而,尽管深层学习在预测方面带来了突破,但由于具有数以百万计参数的多层结构的黑箱性质,它往往缺乏解释性,因此不适于统计推理。在本文中,我们利用深层学习的优势将它应用到量化回归中,以便产生可解释的结果和进行统计推理的目标。我们通过采用基于部分线性定量回归模型的半对称法来实现这一目标。在这种模型中,对统计推断的主要兴趣的共变式是线性,而所有其他共变式则通过深层神经网络进行非对等的模拟。除了新的方法外,我们还从理论上为拟议的模型提供了合理性理由,通过建立基本-美元对等代数系数的一致性以及微量代数计算法模型和微量最佳合并率,而不是模拟的模型、更精确的模拟性、更精确的模型、更精确的模拟、不精确的模拟的、不精确的预测。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
4+阅读 · 2019年9月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月11日
Arxiv
0+阅读 · 2021年8月9日
Arxiv
0+阅读 · 2021年8月6日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
4+阅读 · 2019年9月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员