Ordinary differential equations (ODEs) are a mathematical model used in many application areas such as climatology, bioinformatics, and chemical engineering with its intuitive appeal to modeling. Despite ODE's wide usage in modeling, the frequent absence of their analytic solutions makes it challenging to estimate ODE parameters from the data, especially when the model has lots of variables and parameters. This paper proposes a Bayesian ODE parameter estimating algorithm which is fast and accurate even for models with many parameters. The proposed method approximates an ODE model with a state-space model based on equations of a numeric solver. It allows fast estimation by avoiding computations of a complete numerical solution in the likelihood. The posterior is obtained by a variational Bayes method, more specifically, the approximate Riemannian conjugate gradient method (Honkela et al. 2010), which avoids samplings based on Markov chain Monte Carlo (MCMC). In simulation studies, we compared the speed and performance of the proposed method with existing methods. The proposed method showed the best performance in the reproduction of the true ODE curve with strong stability as well as the fastest computation, especially in a large model with more than 30 parameters. As a real-world data application, a SIR model with time-varying parameters was fitted to the COVID-19 data. Taking advantage of the proposed algorithm, more than 50 parameters were adequately estimated for each country.


翻译:普通差分方程式(ODEs)是在许多应用领域,如气候学、生物信息学和化学工程及其直观的建模吸引力等应用领域的数学模型。尽管ODE在建模中广泛使用,但经常缺乏分析解决方案,因此很难从数据中估计ODE参数,特别是当模型有许多变量和参数时。本文件建议采用巴伊西亚的ODE参数估算算法,这种算法既快速又准确,即使模型有许多参数。拟议方法与基于数字求解器方程式的州-空间模型相近。该方法通过避免计算完全的数字解决方案的可能性,可以快速估算。通过变异巴伊斯法,更具体地说,通过近似里曼尼的 conjugate梯法(Honkela等人,2010年)来估算数据,避免根据Markov 链 Monte Carlo(MC ) 进行抽样。在模拟研究中,我们比较了拟议方法的速度和性能与现有方法相比较。拟议方法显示50-19参数的最佳模型,通过避免计算整个数字方法的计算得出最佳的计算结果,在50-rder 国家测算中,在S-rational 中,在S-reval 的精确测算中,在精确测测算中,比为最稳度的精确的参数是最精确的模型是最精确的模型,在30-ral-ral-ral-ration-ration-ral的精确的计算中,在精确的计算中,在S-ral的精确的比为精确的精确的精确度是精确的计算中,在精确度为精确度为精确度为精确的比。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
111+阅读 · 2020年11月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
1+阅读 · 2021年10月5日
Arxiv
0+阅读 · 2021年10月5日
Arxiv
6+阅读 · 2018年10月3日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员