This article considers inference in linear instrumental variables models with many regressors, all of which could be endogenous. We propose the STIV estimator. Identification robust confidence sets are derived by solving linear programs. We present results on rates of convergence, variable selection, confidence sets which adapt to the sparsity, and analyze confidence bands for vectors of linear functions using bias correction. We also provide solutions to some instruments being endogenous. The application is to the EASI demand system.
翻译:本条考虑了线性工具变量模型的推论, 有许多递减器, 所有这些都可能是内生的。 我们建议使用 STIV 估计器 。 识别坚固的置信箱通过解决线性程序产生 。 我们介绍了关于趋同率、 可变选择、 适应宽度的置信箱的结果, 并利用偏差校正来分析线性函数矢量的置信带 。 我们还为一些内生工具提供了解决方案 。 应用程序是 EASI 需求系统 的 。