We develop a Bayesian graphical modeling framework for functional data for correlated multivariate random variables observed over a continuous domain. Our method leads to graphical Markov models for functional data which allows the graphs to vary over the functional domain. The model involves estimation of graphical models that evolve functionally in a nonparametric fashion while accounting for within-functional correlations and borrowing strength across functional positions so contiguous locations are encouraged but not forced to have similar graph structure and edge strength. We utilize a strategy that combines nonparametric basis function modeling with modified Bayesian graphical regularization techniques, which induces a new class of hypoexponential normal scale mixture distributions that not only leads to adaptively shrunken estimators of the conditional cross-covariance but also facilitates a thorough theoretical investigation of the shrinkage properties. Our approach scales up to large functional datasets collected on a fine grid. We show through simulations and real data analysis that the Bayesian functional graphical model can efficiently reconstruct the functionally-evolving graphical models by accounting for within-function correlations.


翻译:我们为连续域观测的相关多变量随机变量的功能数据开发了贝叶西亚图形建模框架。 我们的方法为功能数据绘制了图形 Markov 模型,使图形在功能域上变化。 模型涉及对功能性模型进行估算,这些图形模型以非参数方式演化,同时考虑功能性相关关系和在功能位置之间借入强度,因此鼓励但不会被迫具有类似的图形结构和边缘强度。 我们使用一种战略,将非参数性基功能模型与修改的贝叶西亚图形规范化技术相结合,从而产生一种新的低度正常规模混合物分布类别,不仅导致条件跨变量的适应性闪烁估计器,而且还有助于彻底的理论研究收缩特性。 我们的方法将规模提升到在精细网格上收集的大型功能数据集。 我们通过模拟和真实的数据分析显示, Bayesian 功能性图形模型可以通过计算功能内关联来有效地重建功能变化的图形模型。

0
下载
关闭预览

相关内容

《图形模型》是国际公认的高评价的顶级期刊,专注于图形模型的创建、几何处理、动画和可视化,以及它们在工程、科学、文化和娱乐方面的应用。GMOD为其读者提供了经过彻底审查和精心挑选的论文,这些论文传播令人兴奋的创新,传授严谨的理论基础,提出健壮和有效的解决方案,或描述各种主题中的雄心勃勃的系统或应用程序。 官网地址:http://dblp.uni-trier.de/db/journals/cvgip/
专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
68+阅读 · 2020年10月24日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
21+阅读 · 2019年8月21日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员