This article aims at the lifetime prognosis of one-shot devices subject to competing causes of failure. Based on the failure count data recorded across several inspection times, statistical inference of the lifetime distribution is studied under the assumption of Lindley distribution. In the presence of outliers in the data set, the conventional maximum likelihood method or Bayesian estimation may fail to provide a good estimate. Therefore, robust estimation based on the weighted minimum density power divergence method is applied both in classical and Bayesian frameworks. Thereafter, the robustness behaviour of the estimators is studied through influence function analysis. Further, in density power divergence based estimation, we propose an optimization criterion for finding the tuning parameter which brings a trade-off between robustness and efficiency in estimation. The article also analyses when the cause of failure is missing for some of the devices. The analytical development has been restudied through a simulation study and a real data analysis where the data is extracted from the SEER database.
翻译:暂无翻译