Documents hold spatial focus and valuable locality characteristics. For example, descriptions of listings in real estate or travel blogs contain information about specific local neighborhoods. This information is valuable to characterize how humans perceive their environment. However, the first step to making use of this information is to identify the spatial focus (e.g., a city) of a document. Traditional approaches for identifying the spatial focus of a document rely on detecting and disambiguating toponyms from the document. This approach requires a vocabulary set of location phrases and ad-hoc rules, which ignore important words related to location. Recent topic modeling approaches using large language models often consider a few topics, each with broad coverage. In contrast, the spatial focus of a document can be a country, a city, or even a neighborhood, which together, is much larger than the number of topics considered in these approaches. Additionally, topic modeling methods are often applied to broad topics of news articles where context is easily distinguishable. To identify the geographic focus of a document effectively, we present a simple but effective Joint Embedding of multi-LocaLitY (JELLY), which jointly learns representations with separate encoders of document and location. JELLY significantly outperforms state-of-the-art methods for identifying spatial focus from documents from a number of sources. We also demonstrate case studies on the arithmetic of the learned representations, including identifying cities with similar locality characteristics and zero-shot learning to identify document spatial focus.
翻译:暂无翻译