Unmanned Aerial Vehicles (UAVs) are of crucial importance in search and rescue missions in maritime environments due to their flexible and fast operation capabilities. Modern computer vision algorithms are of great interest in aiding such missions. However, they are dependent on large amounts of real-case training data from UAVs, which is only available for traffic scenarios on land. Moreover, current object detection and tracking data sets only provide limited environmental information or none at all, neglecting a valuable source of information. Therefore, this paper introduces a large-scaled visual object detection and tracking benchmark (SeaDronesSee) aiming to bridge the gap from land-based vision systems to sea-based ones. We collect and annotate over 54,000 frames with 400,000 instances captured from various altitudes and viewing angles ranging from 5 to 260 meters and 0 to 90 degrees while providing the respective meta information for altitude, viewing angle and other meta data. We evaluate multiple state-of-the-art computer vision algorithms on this newly established benchmark serving as baselines. We provide an evaluation server where researchers can upload their prediction and compare their results on a central leaderboard
翻译:无人驾驶航空飞行器(无人驾驶飞行器)由于其灵活和快速作业能力,在海上搜索和救援任务中至关重要。现代计算机视觉算法对于协助这些飞行任务极感兴趣,然而,这些算法依赖于无人驾驶飞行器提供的大量实际培训数据,而这种数据只对陆地交通情况可用。此外,目前的物体探测和跟踪数据集只提供有限的环境信息或根本没有任何信息,忽视了宝贵的信息来源。因此,本文件引入了一个大型的视觉物体探测和跟踪基准(SeaDrones See),目的是弥合陆基视系统与海基系统之间的差距。我们收集并记录了54 000多个框架,从各种高度采集的400 000个实例,从5米到260米到0至90度的视角查看,同时提供相应的高度、角度和其他元数据的元信息。我们评估了这个新建立的基准上的多个最先进的计算机视觉算法,作为基线。我们提供了一个评估服务器,研究人员可以将自己的预测结果上传到中央领导板上。我们提供了一个评估服务器,并将结果进行比较。