When producing a model to object detection in a specific context, the first obstacle is to have a dataset labeling the desired classes. In RoboCup, some leagues already have more than one dataset to train and evaluate a model. However, in the Small Size League (SSL), there is not such dataset available yet. This paper presents an open-source dataset to be used as a benchmark for real-time object detection in SSL. This work also presented a pipeline to train, deploy, and evaluate Convolutional Neural Networks (CNNs) models in a low-power embedded system. This pipeline was used to evaluate the proposed dataset with state-of-art optimized models. In this dataset, the MobileNet SSD v1 achieves 44.88% AP (68.81% AP50) at 94 Frames Per Second (FPS) while running on an SSL robot.
翻译:当生成一个模型以在特定情况下进行天体探测时,第一个障碍是将数据集标记为想要的类别。 在 RoboCup 中,有些联盟已经拥有不止一个数据集来训练和评价一个模型。 但是,在小型联盟(SSL)中,还没有这样的数据集。 本文提出了一个开放源数据集, 用作在SSL 中实时探测物体的基准。 这项工作还提出了一个管道, 用于在一个低功率嵌入系统中培训、 部署和评价革命神经网络(CNNs) 模型。 这个管道被用来用最先进的优化模型来评价拟议的数据集。 在这个数据集中, MobileNet SSD v1 在94 Frames Per II (FPS) 运行时, 在94 Frames Per II (68.81% AP50) 实现了44.88% AP(68.81% AP50 AP50) 。