Let $G$ be a graph on $n$ nodes. In the stochastic population protocol model, a collection of $n$ indistinguishable, resource-limited nodes collectively solve tasks via pairwise interactions. In each interaction, two randomly chosen neighbors first read each other's states, and then update their local states. A rich line of research has established tight upper and lower bounds on the complexity of fundamental tasks, such as majority and leader election, in this model, when $G$ is a clique. Specifically, in the clique, these tasks can be solved fast, i.e., in $n \operatorname{polylog} n$ pairwise interactions, with high probability, using at most $\operatorname{polylog} n$ states per node. In this work, we consider the more general setting where $G$ is an arbitrary graph, and present a technique for simulating protocols designed for fully-connected networks in any connected regular graph. Our main result is a simulation that is efficient on many interesting graph families: roughly, the simulation overhead is polylogarithmic in the number of nodes, and quadratic in the conductance of the graph. As a sample application, we show that, in any regular graph with conductance $\phi$, both leader election and exact majority can be solved in $\phi^{-2} \cdot n \operatorname{polylog} n$ pairwise interactions, with high probability, using at most $\phi^{-2} \cdot \operatorname{polylog} n$ states per node. This shows that there are fast and space-efficient population protocols for leader election and exact majority on graphs with good expansion properties. We believe our results will prove generally useful, as they allow efficient technology transfer between the well-mixed (clique) case, and the under-explored spatial setting.


翻译:$G$ 是 $n 节点上的图表 。 在 Stochacial 人口协议模型中, 收集了 $n 无法区分的、 资源有限的节点 。 在每次互动中, 两个随机选择的邻居首先相互阅读对方的状态, 然后更新本地状态 。 在这项工作中, 一个丰富的研究线在基本任务的复杂性上下设置了紧紧的界限, 例如多数和领导选举, 当$G 是一个圆点时 。 具体地说, 在 美元节点中, 这些任务可以快速解决, 也就是说, $n 无法区分的、 资源限制的节点点 。 在 $ 的双对齐点互动中, 使用最多 $ operatorname{polylogy} 来进行双对齐 。 在这项工作中, $G是任意的, 并展示一个用于完全连接的网络的技术 。 我们的主要结果是在许多有趣的图表组中进行模拟: 大致上, 模拟平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面,, 显示的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
《机器学习思维导图》,一图掌握机器学习知识要点
专知会员服务
68+阅读 · 2021年1月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月11日
Arxiv
0+阅读 · 2021年4月11日
Arxiv
0+阅读 · 2021年4月8日
VIP会员
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员