We consider the problem of ON-OFF privacy in which a user is interested in the latest message generated by one of n sources available at a server. The user has the choice to turn privacy ON or OFF depending on whether he wants to hide his interest at the time or not. The challenge of allowing the privacy to be toggled between ON and OFF is that the user's online behavior is correlated over time. Therefore, the user cannot simply ignore the privacy requirement when privacy is OFF. We represent the user's correlated requests by an n-state Markov chain. Our goal is to design ON-OFF privacy schemes with optimal download rate that ensure privacy for past and future requests. We devise a polynomial-time algorithm to construct an ON-OFF privacy scheme. Moreover, we present an upper bound on the achievable rate. We show that the proposed scheme is optimal and the upper bound is tight for some special families of Markov chains. We also give an implicit characterization of the optimal achievable rate as a linear programming (LP).


翻译:我们考虑了OOFF隐私问题,用户对服务器上现有n源之一的最新信息感兴趣。用户可以选择根据他是否愿意在时间上隐藏自己的兴趣而将隐私转到 OOFF 上或调离处。允许在OOOF 和 OF 之间混杂隐私的难题是,用户的在线行为随着时间的推移是相互关联的。因此,当隐私是 FOF 时,用户不能完全忽视隐私要求。我们代表的是n-state Markov 链条用户的相关请求。我们的目标是设计OOFF 隐私计划,以最佳下载率确保过去和今后请求的隐私。我们设计了一个多米时算法,以构建一个ON-OFF 隐私计划。此外,我们提出了可实现率的上限。我们表明,拟议的计划是最佳的,对Markov 链中的某些特殊家庭来说,上限是紧紧的。我们还以线性编程(LP)为最佳可实现率的隐含的描述。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
0+阅读 · 2021年6月1日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员