We develop a variational framework to understand the properties of the functions learned by neural networks fit to data. We propose and study a family of continuous-domain linear inverse problems with total variation-like regularization in the Radon domain subject to data fitting constraints. We derive a representer theorem showing that finite-width, single-hidden layer neural networks are solutions to these inverse problems. We draw on many techniques from variational spline theory and so we propose the notion of polynomial ridge splines, which correspond to single-hidden layer neural networks with truncated power functions as the activation function. The representer theorem is reminiscent of the classical reproducing kernel Hilbert space representer theorem, but we show that the neural network problem is posed over a non-Hilbertian Banach space. While the learning problems are posed in the continuous-domain, similar to kernel methods, the problems can be recast as finite-dimensional neural network training problems. These neural network training problems have regularizers which are related to the well-known weight decay and path-norm regularizers. Thus, our result gives insight into functional characteristics of trained neural networks and also into the design neural network regularizers. We also show that these regularizers promote neural network solutions with desirable generalization properties.


翻译:我们开发了一个可变框架, 以了解神经网络所学功能的特性。 我们提议并研究一个连续的多面线性反向问题, 在受数据安装制约的情况下, 在 Radon 域中存在完全变异的正规化问题。 我们产生一个代表理论, 显示有限宽度、 单层层神经网络是这些反向问题的解决方案。 我们从变异样样样样理论中吸取了许多技术, 因此我们建议了多面脊样条的理念, 与单层层神经网络相对应, 其电源功能为激活功能。 代表的理论是古典复制核心内尔· 希尔伯特 空域代表理论的类似。 但我们显示, 神经网络问题是由非 Hilbertian Banach 空间造成的。 虽然学习问题在连续多面中存在, 类似内核方法, 问题可以被重新表述为定式神经网络培训问题。 这些神经网络培训问题与已知的神经网络的正统化性解决方案有关, 也让我们的正统化性网络路径和系统显示这些常态的系统。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月6日
Arxiv
0+阅读 · 2021年4月5日
Arxiv
0+阅读 · 2021年4月2日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关VIP内容
相关资讯
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员