The goal of nonparametric regression is to recover an underlying regression function from noisy observations, under the assumption that the regression function belongs to a pre-specified infinite dimensional function space. In the online setting, when the observations come in a stream, it is generally computationally infeasible to refit the whole model repeatedly. There are as of yet no methods that are both computationally efficient and statistically rate-optimal. In this paper, we propose an estimator for online nonparametric regression. Notably, our estimator is an empirical risk minimizer (ERM) in a deterministic linear space, which is quite different from existing methods using random features and functional stochastic gradient. Our theoretical analysis shows that this estimator obtains rate-optimal generalization error when the regression function is known to live in a reproducing kernel Hilbert space. We also show, theoretically and empirically, that the computational expense of our estimator is much lower than other rate-optimal estimators proposed for this online setting.
翻译:非参数回归的目标是从噪音观测中恢复一个基本的回归功能,假设回归函数属于预设的无限维功能空间。在在线环境中,当观测结果进入流中时,一般是计算不可行的,无法反复修改整个模型。到目前为止,还没有一种方法既具有计算效率,又具有统计性最佳率。在本文中,我们提议了在线非参数回归的估算器。值得注意的是,我们的估算器是一个确定性线性空间中的经验风险最小化器(ERM),它与使用随机特征和功能性随机度的现有方法有很大不同。我们的理论分析显示,当已知回归功能生活在再生内核赫伯特空间时,该估计器获得的速率最佳概括误差。我们从理论上和从经验上也表明,我们估算器的计算费用远远低于为这一在线设置提议的其他速率-最佳估计器。