With the ubiquitous graph-structured data in various applications, models that can learn compact but expressive vector representations of nodes have become highly desirable. Recently, bearing the message passing paradigm, graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs. However, a majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs with various types of nodes and edges. Also, despite the necessity of inductively producing representations for completely new nodes (e.g., in streaming scenarios), few heterogeneous GNNs can bypass the transductive learning scheme where all nodes must be known during training. Furthermore, the training efficiency of most heterogeneous GNNs has been hindered by their sophisticated designs for extracting the semantics associated with each meta path or relation. In this paper, we propose WIde and DEep message passing Network (WIDEN) to cope with the aforementioned problems about heterogeneity, inductiveness, and efficiency that are rarely investigated together in graph representation learning. In WIDEN, we propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes. To further improve the training efficiency, we innovatively present an active downsampling strategy that drops unimportant neighbor nodes to facilitate faster information propagation. Experiments on three real-world heterogeneous graphs have further validated the efficacy of WIDEN on both transductive and inductive node representation learning, as well as the superior training efficiency against state-of-the-art baselines.


翻译:随着各种应用中无处不在的图形结构数据,能够学习节点的缩略式但显性矢量表示的模型变得非常理想。最近,借助信息传递范式,图形神经网络(GNNS)大大提高了图表中节点代表学习的性能。然而,大多数GNNS类仅设计为同质图形,导致对具有各种节点和边缘的更丰富多益的多元图的适应性较差。此外,尽管有必要为全新节点(如流动情景中)主动生成更快速的表达式,但很少有混杂的GNNS能够绕过在培训中必须知道所有节点的转导式学习计划。此外,大多数差异性GNNS的培训效率受到阻碍,因为其精密的设计是为了提取与每种元路径或关系相关的语义。在本文中,我们建议Wide和Deep信息传递网络(WIDEN)来应对上述关于超度、直流度、直观和高效度的问题,而这些问题很少在平流化的图像培训中被一起调查。在平流式上,我们从直流式的平流式的平流化的平流化的平流性平流式学习中,我们提出一个新式的平流的平流的路径计划是没有进式的平流性平流的平流式的平流式的平流式的平流式平流式的平流式策略,我们提出一个新式的图。在高。我们向式计划,我们建议一个新式的平向式的平的平的平向式图式图式图式图式计划,我们建议一种新式的平的平的图式的平的平的平的平的平向式平的平的平的平的平的平的平向式平向式图式平的平式平的平的平式平式平的平式平式平式平式平式平式平式平式平式平式图。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
35+阅读 · 2020年1月2日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
3+阅读 · 2018年4月10日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
Top
微信扫码咨询专知VIP会员