Keyphrase generation aims to produce a set of phrases summarizing the essentials of a given document. Conventional methods normally apply an encoder-decoder architecture to generate the output keyphrases for an input document, where they are designed to focus on each current document so they inevitably omit crucial corpus-level information carried by other similar documents, i.e., the cross-document dependency and latent topics. In this paper, we propose CDKGen, a Transformer-based keyphrase generator, which expands the Transformer to global attention with cross-document attention networks to incorporate available documents as references so as to generate better keyphrases with the guidance of topic information. On top of the proposed Transformer + cross-document attention architecture, we also adopt a copy mechanism to enhance our model via selecting appropriate words from documents to deal with out-of-vocabulary words in keyphrases. Experiment results on five benchmark datasets illustrate the validity and effectiveness of our model, which achieves the state-of-the-art performance on all datasets. Further analyses confirm that the proposed model is able to generate keyphrases consistent with references while keeping sufficient diversity. The code of CDKGen is available at https://github.com/SVAIGBA/CDKGen.


翻译:关键词生成旨在生成一组短语, 总结给定文档的基本要素。 常规方法通常使用编码器- 编码器结构来生成输入文档的输出关键字句, 其设计目的是聚焦于每个当前文档, 从而不可避免地省略其他类似文档, 即交叉文档依赖性和潜在主题 。 在本文中, 我们提议以 CDKGen 为主的变换器关键词句生成器, 它将变换器扩大到以交叉文档关注网络为主的全球关注点, 以将现有文档作为参考, 从而用主题信息指南生成更好的关键字句。 在拟议的变换器+交叉文档关注结构的顶端, 我们还采用一个复制机制, 通过从文档中选择合适的单词来强化我们的模式, 处理关键词中的校外词 。 五个基准数据集的实验结果说明了我们模型的有效性和有效性, 实现所有数据集的状态- 艺术性能。 进一步分析证实, 拟议的模型能够生成关键词句, 并同时保持充分的多样性 MAG/ GVAK 的 代码 。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月22日
Arxiv
0+阅读 · 2023年2月21日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员