On current computer architectures, GMRES' performance can be limited by its communication cost to generate orthonormal basis vectors of the Krylov subspace. To address this performance bottleneck, its $s$-step variant orthogonalizes a block of $s$ basis vectors at a time, potentially reducing the communication cost by a factor of $s$. Unfortunately, for a large step size $s$, the solver can generate extremely ill-conditioned basis vectors, and to maintain stability in practice, a conservatively small step size is used, which limits the performance of the $s$-step solver. To enhance the performance using a small step size, in this paper, we introduce a two-stage block orthogonalization scheme. Similar to the original scheme, the first stage of the proposed method operates on a block of $s$ basis vectors at a time, but its objective is to maintain the well-conditioning of the generated basis vectors with a lower cost. The orthogonalization of the basis vectors is delayed until the second stage when enough basis vectors are generated to obtain higher performance. Our analysis shows the stability of the proposed two-stage scheme. The performance is improved because while the same amount of computation as the original scheme is required, most of the communication is done at the second stage of the proposed scheme, reducing the overall communication requirements. Our performance results with up to 192 NVIDIA V100 GPUs on the Summit supercomputer demonstrate that when solving a 2D Laplace problem, the two-stage approach can reduce the orthogonalization time and the total time-to-solution by the respective factors of up to $2.6\times$ and $1.6\times$ over the original $s$-step GMRES, which had already obtained the respective speedups of $2.1\times$ and $1.8\times$ over the standard GMRES. Similar speedups were obtained for 3D problems and for matrices from the SuiteSparse Matrix Collection.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员