Learning Variable Impedance Control(VIC) policy can help robot assistants to intelligently adapt their manipulation compliance to ensure both safe interaction and proper task completion when operating in human-robot interaction environments. In this paper, we propose a DMP-based framework that learns and generalizes variable impedance manipulation skills from human demonstrations. This framework improves robots' adaptability to environment changes(i.e. the weight and shape changes of the robot end-effector) and inherits the efficiency of demonstration variance-based stiffness estimation method. Besides, with our stiffness estimation method, we generate not only translational stiffness profiles, but also rotational stiffness profiles that are ignored or incomplete in most learning VIC papers. Real-world experiments on a 7 DoF runduant robot manipulator haven been conducted to validate the effectiveness of our framework.
翻译:学习可变障碍控制(VIC)政策可以帮助机器人助理明智地调整其操纵合规性,以确保在人-机器人互动环境中操作时安全互动和适当完成任务。在本文件中,我们提议一个基于DMP的框架,以学习和概括人类演示产生的可变阻力操纵技能。这个框架可以提高机器人对环境变化(即机器人终端效应的重量和形状变化)的适应性,并继承显示差异性强度估计方法的效率。此外,除了我们的僵硬估计方法外,我们不仅生成了翻译性僵硬性特征,而且还生成了在维也纳国际中心大多数学习论文中被忽视或不完整的旋转性僵硬性特征特征特征。在7个多功能机器人操纵庇护所上进行了现实世界实验,以验证我们框架的有效性。