The minimax theorem for zero-sum games is easily proved from the strong duality theorem of linear programming. For the converse direction, the standard proof by Dantzig (1951) is known to be incomplete. We explain and combine classical theorems about solving linear equations with nonnegative variables to give a correct alternative proof, more directly than Adler (2013). We also extend Dantzig's game so that any max-min strategy gives either an optimal LP solution or shows that none exists.
翻译:线性编程的强烈双元性理论很容易证明零和游戏的迷你数学理论。 在相反的方向上, Dantzig(1951年)的标准证据是不完整的。 我们解释并结合了解决线性方程的经典理论和非负变量, 以提供正确的替代证据, 比Adler(2013年)更直接。 我们还扩展了Dantzig的游戏, 以便任何最大值策略都能给出最佳的LP解决方案, 或者显示不存在。