Most of the work in auction design literature assumes that bidders behave rationally based on the information available for each individual auction. However, in today's online advertising markets, one of the most important real-life applications of auction design, the data and computational power required to bid optimally are only available to the auction designer, and an advertiser can only participate by setting performance objectives (clicks, conversions, etc.) for the campaign. In this paper, we focus on value-maximizing campaigns with return-on-investment (ROI) constraints, which is widely adopted in many global-scale auto-bidding platforms. Through theoretical analysis and empirical experiments on both synthetic and realistic data, we find that second price auction exhibits counterintuitive behaviors in the resulted equilibrium and loses its dominant theoretical advantages in single-item scenarios. At the market scale, the equilibrium structure is complicated and opens up space for bidders and even auctioneers to exploit. We also explore the broader impacts of the auto-bidding mechanism beyond efficiency and strategyproofness. In particular, the multiplicity of equilibria and the input sensitivity make advertisers' utilities unstable. In addition, the interference among both bidders and goods introduces bias into A/B testing, which hinders the development of even non-bidding components of the platform. The aforementioned phenomena have been widely observed in practice, and our results indicate that one of the reasons might be intrinsic to the underlying auto-bidding mechanism. To deal with these challenges, we provide suggestions and potential solutions for practitioners.


翻译:拍卖设计文献中的大部分工作都假定投标人根据每个拍卖的可用信息行事是合理的;然而,在今天的在线广告市场中,拍卖设计中最重要的真实应用是拍卖设计中最重要的现实应用,只有拍卖设计人才能获得最佳竞标所需的数据和计算能力,广告商只能通过为竞选设定业绩目标(点击、转换等)来参与。在本文件中,我们侧重于以投资回报(ROI)限制为目的的价值最大化运动,这种限制在许多全球规模的自动招标平台中得到广泛采用。通过对合成数据和现实数据的理论分析和实验实验,我们发现第二次价格拍卖展示了平衡的反直觉行为,在单一项目情景中失去了其主要的理论优势。在市场规模上,平衡结构十分复杂,为投标人甚至拍卖人开辟了可以利用的空间。我们还探讨了除效率和战略上的解决办法外,自动招标机制的更广泛影响。特别是,在众多的不对称性和投入敏感性使广告商的公用事业不稳定性成为了其中的一个因素。此外,在标方和标方之间的干扰和标方之间的不偏差性,使得标和标方之间的不偏差成为了我们所遵循的标方/标/标方之间的选择。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Core-Elements for Classical Linear Regression
Arxiv
0+阅读 · 2023年3月17日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
0+阅读 · 2023年3月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员