The COVID-19 pandemic has claimed millions of lives worldwide and elicited heightened emotions. This study examines the expression of various emotions pertaining to COVID-19 in the United States and India as manifested in over 54 million tweets, covering the fifteen-month period from February 2020 through April 2021, a period which includes the beginnings of the huge and disastrous increase in COVID-19 cases that started to ravage India in March 2021. Employing pre-trained emotion analysis and topic modeling algorithms, four distinct types of emotions (fear, anger, happiness, and sadness) and their time- and location-associated variations were examined. Results revealed significant country differences and temporal changes in the relative proportions of fear, anger, and happiness, with fear declining and anger and happiness fluctuating in 2020 until new situations over the first four months of 2021 reversed the trends. Detected differences are discussed briefly in terms of the latent topics revealed and through the lens of appraisal theories of emotions, and the implications of the findings are discussed.


翻译:本研究检视了自2020年2月至2021年4月的15个月期间,覆盖超过5400万条推特,分析美国和印度民众关于COVID-19的不同情绪表达。这段时间包括了2021年3月开始肆虐的印度 COVID-19 病例激增情况。采用预训练情感分析和主题建模算法,研究了四种不同类型的情绪(恐惧、愤怒、快乐和悲伤)及其与时间和地点相关的变化。研究结果显示了显著的国家差异和与时间变化相关的相对情绪比例的差异,其中恐惧情绪下降,愤怒和快乐情绪波动不定,直至2021年前四个月新情况出现改变了这种趋势。通过情绪评估理论的思考和研究所暴露的潜在主题,简要讨论了不同之处,并讨论了发现的含义。

0
下载
关闭预览

相关内容

自然语言处理顶会COLING2020最佳论文出炉!
专知会员服务
23+阅读 · 2020年12月12日
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
60+阅读 · 2020年7月30日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
11+阅读 · 2021年3月25日
VIP会员
相关VIP内容
自然语言处理顶会COLING2020最佳论文出炉!
专知会员服务
23+阅读 · 2020年12月12日
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
60+阅读 · 2020年7月30日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员