This paper is concerned with convergence of stochastic gradient algorithms with momentum terms in the nonconvex setting. A class of stochastic momentum methods, including stochastic gradient descent, heavy ball, and Nesterov's accelerated gradient, is analyzed in a general framework under mild assumptions. Based on the convergence result of expected gradients, we prove the almost sure convergence by a detailed discussion of the effects of momentum and the number of upcrossings. It is worth noting that there are not additional restrictions imposed on the objective function and stepsize. Another improvement over previous results is that the existing Lipschitz condition of the gradient is relaxed into the condition of Holder continuity. As a byproduct, we apply a localization procedure to extend our results to stochastic stepsizes.


翻译:本文涉及随机梯度算法与非电流设置中动力值的趋同问题。 在轻度假设下,在总体框架内分析了一组随机梯度动力学方法,包括随机梯度下降、重球和内斯特罗夫加速梯度。根据预期梯度的趋同结果,我们通过详细讨论动力效应和交错次数,证明几乎可以肯定地趋同。值得指出的是,对客观功能和分级没有附加的限制。与以往相比,另一个改进是,现有的Lipschitz 梯度状况已放松到Holder的连续性状态。作为副产品,我们应用了本地化程序来扩大我们的结果,以进行分级化。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
自定义损失函数Gradient Boosting
AI研习社
13+阅读 · 2018年10月16日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年8月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
自定义损失函数Gradient Boosting
AI研习社
13+阅读 · 2018年10月16日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员