Assessing the similarity of two images is a complex task that has attracted significant efforts in the image processing community. The widely used Structural Similarity Index Measure (SSIM) addresses this problem by quantifying a perceptual structural similarity. In this paper we consider a recently introduced continuous SSIM (cSSIM), which allows one to analyze sequences of images of increasingly fine resolutions. We prove that this index includes the classical SSIM as a special case, and we provide a precise connection between image similarity measured by the cSSIM and by the $L_2$ norm. Using this connection, we derive bounds on the cSSIM by means of bounds on the $L_2$ error, and we even prove that the two error measures are equivalent in certain circumstances. We exploit these results to obtain precise rates of convergence with respect to the cSSIM for several concrete image interpolation methods, and we further validate these findings by many numerical experiments. This newly established connection paves the way to obtain novel insights into the features and limitations of the SSIM.


翻译:评估两种图像的相似性是一项复杂的任务,它吸引了图像处理界的大量努力。广泛使用的结构相似指数测量(SSIM)通过量化概念性结构相似性来解决这个问题。在本文中,我们考虑的是最近引入的连续的SSIM(cSSIM)(cSSIM)(cSSIM)(cSSIM)(cSSIM)(cSSIM)(cSSIM))(cSSIM)(cSSIM)(cSSIM))(cSSIM)(cSSIM)(cSSIM)(cSSIM)(cSSI)(cSSIM)(cSSIM)(cSSIM)(cSSIM)(cSSIM)(cSSIM)(cSSIM)(cSSIM)(cSSIM)(c)(cSSIM)(cSSIM)(cSSIM)(c)(cSSIM)(CSSIM)(CSSIM(CSSIM)(SISIM)(SSSIM)(C)(crossmessional pliculation) (cloative commessional) (cession) (cloat the the supernation) (culation) ($_2$2$(cloat)(cload)) comm) comm) comm) comm(cult) byt) ex.) exm(cion.) by the.

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员