Inspired by foundational studies in classical and quantum physics, and by information retrieval studies in quantum information theory, we prove that the notions of 'energy' and 'entropy' can be consistently introduced in human language and, more generally, in human culture. More explicitly, if energy is attributed to words according to their frequency of appearance in a text, then the ensuing energy levels are distributed non-classically, namely, they obey Bose-Einstein, rather than Maxwell-Boltzmann, statistics, as a consequence of the genuinely 'quantum indistinguishability' of the words that appear in the text. Secondly, the 'quantum entanglement' due to the way meaning is carried by a text reduces the (von Neumann) entropy of the words that appear in the text, a behaviour which cannot be explained within classical (thermodynamic or information) entropy. We claim here that this 'quantum-type behaviour is valid in general in human language', namely, any text is conceptually more concrete than the words composing it, which entails that the entropy of the overall text decreases. In addition, we provide examples taken from cognition, where quantization of energy appears in categorical perception, and from culture, where entities collaborate, thus 'entangle', to decrease overall entropy. We use these findings to propose the development of a new 'non-classical thermodynamic theory' for human cognition, which also covers broad parts of human culture and its artefacts and bridges concepts with quantum physics entities.


翻译:受古典和量子物理学基础研究的启发, 以及量子信息理论信息检索研究的启发, 我们证明“ 能源” 和“ 杂交” 的概念可以持续地在人类语言中引入, 更明确地说, 如果能量根据其在文本中的出现频率被分配到文字中的文字, 那么随后的能量水平就会被非经典地分配, 也就是说, 它们服从于 Bose- Einstein, 而不是 Maxwell- Boltzmann, 统计数据, 其结果是文本中出现的字句真正“ 不可分性 ” 。 其次, “ 能源” 和“ 杂交” 的概念可以持续地在人类文化中引入。 文本中出现的“ 能量” (von Neumann), 其词的变异异性(von Neualmann), 其变异性, 无法在古典( 热动或信息) 中被解释的行为。 我们在这里声称, “ 量型类型的行为在人类语言中是通用的, ”,, 即任何文本比其表达的词更具体的词,, 它的变化概念, 也从整体的变化的变化, 从整个的变化中, 的变化中, 提供了一种变化, 的变化, 和变化的 的理论化, 我们化, 我们提供了一种变的变的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 。</s>

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
12+阅读 · 2022年4月30日
Arxiv
31+阅读 · 2022年2月15日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员