Privacy-preserving machine learning has become a popular area of research due to the increasing concern over data privacy. One way to achieve privacy-preserving machine learning is to use secure multi-party computation, where multiple distrusting parties can perform computations on data without revealing the data itself. We present Secure-TF, a privacy-preserving machine learning framework based on MPC. Our framework is able to support widely-used machine learning models such as logistic regression, fully-connected neural network, and convolutional neural network. We propose novel cryptographic protocols that has lower round complexity and less communication for computing sigmoid, ReLU, conv2D and there derivatives. All are central building blocks for modern machine learning models. With our more efficient protocols, our system is able to outperform previous state-of-the-art privacy-preserving machine learning framework in the WAN setting.
翻译:由于日益关注数据隐私,保护隐私的机器学习已成为一个受欢迎的研究领域。实现保护隐私的机器学习的一个方法是使用安全的多方计算,让多个不信任方可以在不披露数据本身的情况下对数据进行计算。我们提出了基于MPC的隐私保护机器学习框架“安全TF”。我们的框架能够支持广泛使用的机器学习模式,如后勤回归、完全连接的神经网络和进化神经网络。我们提出了新的加密协议,这些协议的周期复杂性较低,而用于计算像样、ReLU、conv2D和衍生物的通信量较少。所有这些都是现代机器学习模型的核心建筑块。有了我们效率更高的协议,我们的系统能够在广域网环境中超越先前最先进的保存隐私的机器学习框架。