The shuffle model of differential privacy has attracted attention in the literature due to it being a middle ground between the well-studied central and local models. In this work, we study the problem of summing (aggregating) real numbers or integers, a basic primitive in numerous machine learning tasks, in the shuffle model. We give a protocol achieving error arbitrarily close to that of the (Discrete) Laplace mechanism in the central model, while each user only sends $1 + o(1)$ short messages in expectation.
翻译:不同隐私的打乱模式在文献中引起了注意,因为它是研究周密的中央和地方模式之间的中间点。在这项工作中,我们研究了打乱(汇总)实际数字或整数的问题,这是许多机器学习任务中最基本的原始任务,在打乱模式中。我们给出了一个协议,在中央模式中任意差错接近(Discrete) Laplace机制,而每个用户只发出1美元+o(1)美元的短信息。