Recent years have seen flourishing research on both semi-supervised learning and 3D room layout reconstruction. In this work, we explore the intersection of these two fields to advance the research objective of enabling more accurate 3D indoor scene modeling with less labeled data. We propose the first approach to learn representations of room corners and boundaries by using a combination of labeled and unlabeled data for improved layout estimation in a 360-degree panoramic scene. Through extensive comparative experiments, we demonstrate that our approach can advance layout estimation of complex indoor scenes using as few as 20 labeled examples. When coupled with a layout predictor pre-trained on synthetic data, our semi-supervised method matches the fully supervised counterpart using only 12% of the labels. Our work takes an important first step towards robust semi-supervised layout estimation that can enable many applications in 3D perception with limited labeled data.
翻译:近些年来,人们在半监督学习和3D室布局重建两方面都看到了蓬勃的研究。 在这项工作中,我们探索了这两个领域的交叉点,以推进更精确的 3D 室内场景建模与标签较少的数据的研究目标。我们建议了第一个方法,通过使用标签和无标签数据相结合的方法,在360度全景场改进布局估计。通过广泛的比较实验,我们证明我们的方法可以利用多达20个标签的例子推进复杂的室内场景的布局估计。如果加上预先训练的关于合成数据的布局预测器,我们的半监督方法与只使用12%标签的完全监督的对应方相匹配。我们的工作迈出了重要的第一步,即实现稳健的半监督的布局估计,从而能够将有限的标签数据应用于3D感知中的许多应用。