We introduce a call-by-name lambda-calculus $\lambda Jn$ with generalized applications which is equipped with distant reduction. This allows to unblock $\beta$-redexes without resorting to the standard permutative conversions of generalized applications used in the original $\Lambda J$-calculus with generalized applications of Joachimski and Matthes. We show strong normalization of simply-typed terms, and we then fully characterize strong normalization by means of a quantitative (i.e. non-idempotent intersection) typing system. This characterization uses a non-trivial inductive definition of strong normalization --related to others in the literature--, which is based on a weak-head normalizing strategy. We also show that our calculus $\lambda Jn$ relates to explicit substitution calculi by means of a faithful translation, in the sense that it preserves strong normalization. Moreover, our calculus $\lambda Jn$ and the original $\Lambda J$-calculus determine equivalent notions of strong normalization. As a consequence, $\lambda J$ inherits a faithful translation into explicit substitutions, and its strong normalization can also be characterized by the quantitative typing system designed for $\lambda Jn$, despite the fact that quantitative subject reduction fails for permutative conversions.
翻译:我们引入了一个名为 lambda- calculus 的呼号 lambda Jnal $\ lambda Jnal, 其通用应用程序配有远的缩略语。 这样可以解冻$\beta$-redexes, 而不采用原始的 $Lambda J$- calculs 所使用的通用应用程序标准平衡转换法, 并普遍应用约阿希姆斯基和马特斯。 我们展示了简单格式术语的高度正常化, 然后我们通过定量( 即非理想的交叉交接) 打字系统, 充分体现了高度的正常化。 这种定性使用非三角的强烈正常化定义 -- -- 与文献中的其他应用程序相关 -- -- 其基础是弱头正常化战略。 我们还表明,我们的缩略语 $\ lambda Jnalblam 和Mattheslesmalityalbalityalityalityality calizations 其精确的翻校正性翻校正(Jamda) astyalalalalim) 。