Estimating location is a central problem in functional data analysis, yet most current estimation procedures either unrealistically assume completely observed trajectories or lack robustness with respect to the many kinds of anomalies one can encounter in the functional setting. To remedy these deficiencies we introduce the first class of optimal robust location estimators based on discretely sampled functional data. The proposed method is based on M-type smoothing spline estimation with repeated measurements and is suitable for both commonly and independently observed trajectories that are subject to measurement error. We show that for commonly observed trajectories the proposed family of estimators is minimax rate optimal while for independently observed trajectories it achieves the optimal nonparametric rate regardless of whether the trajectories are densely or sparsely sampled. We illustrate the excellent performance of the proposed family of estimators relative to existing methods in a Monte-Carlo study and a real-data example.


翻译:估计位置是功能数据分析中的一个中心问题,然而,目前大多数估计程序要么不切实际地假设完全观察到的轨道,要么在功能环境中遇到的多种异常方面缺乏稳健性。为了弥补这些缺陷,我们根据分散抽样功能数据引入了第一类最佳稳健位置估计器。拟议方法基于M型平滑样样样估计,反复测量,适合经常和独立观测的轨道,但会发生测量错误。我们显示,对于常见的轨道,拟议的估计仪群是最佳的迷你轴速率,而对于独立观测的轨迹而言,它达到最佳的非参数率,而不论轨迹是密集还是零散抽样。我们介绍了蒙特-卡洛研究中拟议的估计仪群相对于现有方法的出色表现和一个真实数据实例。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月7日
Arxiv
0+阅读 · 2021年1月6日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员